Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG
نویسندگان
چکیده
In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodological research has been devoted to developing sophisticated Bayesian source imaging inversion schemes, while dipoles have received less such attention. Dipole models have their advantages; they are often appropriate summaries of evoked responses or helpful first approximations. Here, we propose a variational Bayesian algorithm that enables the fast Bayesian inversion of dipole models. The approach allows for specification of priors on all the model parameters. The posterior distributions can be used to form Bayesian confidence intervals for interesting parameters, like dipole locations. Furthermore, competing models (e.g., models with different numbers of dipoles) can be compared using their evidence or marginal likelihood. Using synthetic data, we found the scheme provides accurate dipole localizations. We illustrate the advantage of our Bayesian scheme, using a multi-subject EEG auditory study, where we compare competing models for the generation of the N100 component.
منابع مشابه
A mesostate-space model for EEG and MEG
We present a multi-scale generative model for EEG, that entails a minimum number of assumptions about evoked brain responses, namely: (1) bioelectric activity is generated by a set of distributed sources, (2) the dynamics of these sources can be modelled as random fluctuations about a small number of mesostates, (3) mesostates evolve in a temporal structured way and are functionally connected (...
متن کاملDevelopment of a variational scheme for model inversion of multi-area model of brain. Part I: simulation evaluation.
We previously developed an integrated model of the brain within a single cortical area for functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) using an extended neural mass model (ENMM). We then extended ENMM from a single-area to a multi-area model to develop a neural mass model of the entire brain. To this end, we derived a nonlinear st...
متن کاملAlgorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆
The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal like...
متن کاملCombined MEG and fMRI model
An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...
متن کاملStructure predicts function: Combining non-invasive electrophysiology with in-vivo histology
We present an approach for combining high resolution MRI-based myelin mapping with functional information from electroencephalography (EEG) or magnetoencephalography (MEG). The main contribution to the primary currents detectable with EEG and MEG comes from ionic currents in the apical dendrites of cortical pyramidal cells, aligned perpendicularly to the local cortical surface. We provide evide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 39 2 شماره
صفحات -
تاریخ انتشار 2008